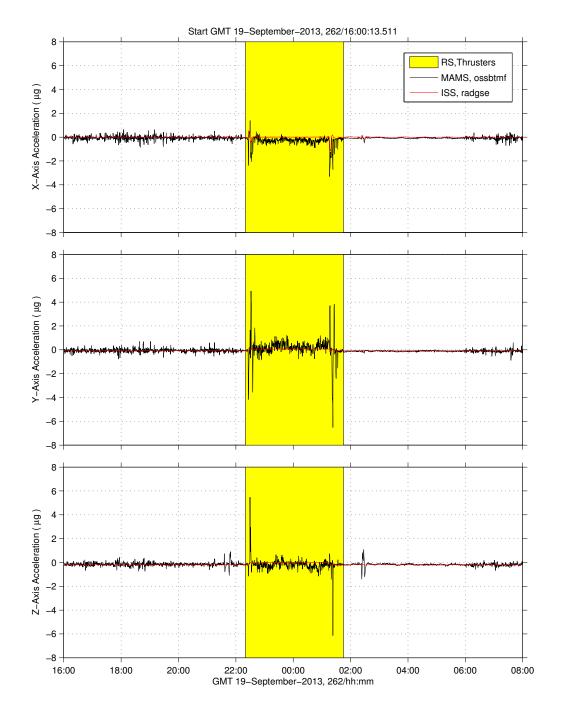
Solar Array Efficiency Test Qualify


Description			
Sensor	121f05 500 sa/sec (200 Hz)		
Location	JPM1F5, ER4, Drawer 2		
Plot Type	spectrogram (Σ); f < 10 Hz		

Notes:

- A solar array efficiency test was performed between about GMT 19-Sep-2013, 22:20 and GMT 20-Sep-2013, 01:45.
- This spectrogram shows a screenshot of a real-time display for the SAMS 121f05 sensor in the JEM. This plot spans over 18 hours and shows the structural mode regime impact of this test, primarily due to Russian Segment attitude control via thrusters.

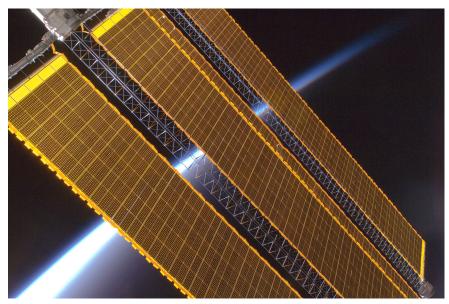
Regime:	Vibratory
Category:	Vehicle
Source:	Solar Array Efficiency Test

Solar Array Efficiency Test Quantify

Description		
Sensor	MAMS, OSSBTMF 0.0625 sa/sec (0.01 Hz)	
Location	LAB1O2, ER1, Lockers 3,4	
Plot Type	Acceleration versus time	

Notes:

- The as-flown time line (see last page) shows that the solar array efficiency test sequence was: (1) maneuver to test attitude, (2) efficiency test, and (3) maneuver back to nominal LVLH TEA attitude.
- During the test, the station attitude was maintained using Russian Segment (RS) thruster firings – the primary disturbance.
- This plot of quasi-steady acceleration data shows that attitude maneuvers near the beginning and end of the yellowhighlighted test period produced peak accelerations approaching 8 ug.
- MAMS quasi-steady measurements show mean vector magnitudes as seen in table below:


2-Hour Span GMT Start	Activity	Mean VecMag (ug)
262/20:00	Crew Wake, Non-Test	0.27
262/23:00	During Test	0.58

Regime:	Quasi-Steady		
Category:	Vehicle		
Source:	Solar Array Efficiency Test		

Solar Array Efficiency Test Ancillary Information

Start-Stop GMT	YPR	F/T Cfg.	Event	Remarks
			Solar Array Efficiency Test (H13_263_A_06.UAF)	9/19/2013
262/22:20	354, 356.8, 0.6	MMT to THR	Handover US to RS	
262/22:25-22:30	0, 0, 0	THR	Maneuver to SAET Attitude	
263/01:15-01:20	354, 356.8, 0.6	THR	Maneuver to LVLH TEA	
263/01:45	354, 356.8, 0.6	THR to MMT	Handover RS to US	VV#3a N2neze, PSARJ Auto, SSARJ Auto

The As-flown Time Line (ATL) information in the table above shows the time span for each of major activities during the Solar Array Efficiency Test (SAET). Russian Segment (RS) thrusters were used for attitude maintenance during the test, while Control Moment Gyros (CMGs) are used for attitude maintenance before and after the test.

